“Pediatric obesity is associated with altered gut microbiota communities”

Alessandra Riva

Note: for non-commercial purposes only
The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood
Pediatric obesity: a growing problem

Since 1980, the prevalence of overweight and obesity has increased remarkably in developed countries.

<table>
<thead>
<tr>
<th></th>
<th>1980</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>16.2%</td>
<td>22.6%</td>
</tr>
<tr>
<td>Male</td>
<td>16.9%</td>
<td>23.8%</td>
</tr>
</tbody>
</table>

Ng et al, *Lancet* 2014; 384: 766–81
The gut microbiota in obese and normal-weight children

<table>
<thead>
<tr>
<th></th>
<th>N (n=36)</th>
<th>O(n=42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>11±0.33</td>
<td>11±1.99</td>
</tr>
<tr>
<td>Sex (male:female)</td>
<td>17:19</td>
<td>21:21</td>
</tr>
<tr>
<td>BMI z-score (kg/m²)</td>
<td>0.3±0.82</td>
<td>3.0±0.7</td>
</tr>
<tr>
<td>Delivery type (vaginal: caesarean)</td>
<td>28:8</td>
<td>22:18</td>
</tr>
<tr>
<td>Infant diet (breast-fed: formula-fed)</td>
<td>14:22</td>
<td>18:21</td>
</tr>
</tbody>
</table>

Riva et al., 2016 Environ Microbiol
Materials and Methods

1- Is there a correlation between gut microbiota and weight?

2- Is there a correlation between microbial metabolites and obesity?

Short chain fatty acids (SCFAs) quantification with capillary electrophoresis
Can *Firmicutes/Bacteroidetes* ratio explain the pathophysiology of obesity?
Taxa associated with BMI z-score

Contrasting shift for *Firmicutes* are intra-family associated

<table>
<thead>
<tr>
<th>Taxonomic level</th>
<th>Taxon</th>
<th>r</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phylum</td>
<td>Firmicutes</td>
<td>0.4145</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>Bacteroidetes</td>
<td>-0.4538</td>
<td><0.0001</td>
</tr>
<tr>
<td>Class</td>
<td>Clostridia</td>
<td>0.3688</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>Bacteroidia</td>
<td>-0.4538</td>
<td><0.0001</td>
</tr>
<tr>
<td>Order</td>
<td>Clostridiales</td>
<td>0.3687</td>
<td>0.0008</td>
</tr>
<tr>
<td></td>
<td>Bacteroidales</td>
<td>-0.4538</td>
<td><0.0001</td>
</tr>
<tr>
<td>Family</td>
<td>Ruminococcaceae</td>
<td>0.3778</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>Bacteroidaceae</td>
<td>-0.4930</td>
<td><0.0001</td>
</tr>
<tr>
<td>Genus</td>
<td>Bacteroides</td>
<td>-0.4930</td>
<td><0.0001</td>
</tr>
<tr>
<td>OTU</td>
<td>OTU 7: Bacteroides vulgatus</td>
<td>-0.4321</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>OTU 3: Faecalibacterium prausnitzii</td>
<td>0.3058</td>
<td>0.0064</td>
</tr>
<tr>
<td></td>
<td>OTU 49: Bacteroides stercoris</td>
<td>-0.3252</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Results

Riva et al., 2016 *Environ Microbiol*
Gut microbiota structure is different in obese children
The fermentation activity of the gut microbiota is different in obese children.
Several taxa are correlated with short chain fatty acids

- **Phylum**
 - **Firmicutes**
 - r****p****value: 0.3107, p-value: 0.005
 - **Bacteroidetes**
 - r****p****value: -0.3145, p-value: 0.005

- **Class**
 - **Clostridia**
 - r****p****value: 0.2765, p-value: 0.01
 - **Bacteroidia**
 - r****p****value: -0.3145, p-value: 0.005

- **Order**
 - **Clostridiales**
 - r****p****value: 0.2767, p-value: 0.01
 - **Bacteroidales**
 - r****p****value: -0.3145, p-value: 0.005

- **Family**
 - **Ruminococcaceae**
 - r****p****value: 0.3120, p-value: 0.005
 - **Bacteroidaceae**
 - r****p****value: -0.2876, p-value: 0.01
 - **Porphyromonadaceae**
 - r****p****value: -0.2845, p-value: 0.01
 - **Rikenellaceae**
 - r****p****value: -0.3107, p-value: 0.005

- **Genus**
 - **Ruminococcaceae**
 - Incertae sedis (Firmicutes)
 - r****p****value: -0.2683, p-value: 0.01
 - **Bacteroides** (Bacteroidetes)
 - r****p****value: -0.2876, p-value: 0.01
 - **Parabacteroides** (Bacteroidetes)
 - r****p****value: -0.2737, p-value: 0.01
 - **Alistipes** (Bacteroidetes)
 - r****p****value: -0.3117, p-value: 0.005
 - **Oscillabacter** (Firmicutes)
 - r****p****value: -0.3205, p-value: 0.004
 - **Subdoligranulum** (Firmicutes)
 - r****p****value: 0.2737, p-value: 0.01
 - **Faecalibacterium** (Firmicutes)
 - r****p****value: 0.4487, p-value: <0.0001

- **OTU**
 - OTU 3: Faecalibacterium prausnitzii
 - r****p****value: 0.4487, p-value: <0.0001
Discussion and conclusion

• Multiple taxa are associated with SCFA levels and BMI z-score, reinforcing the tight link between the microbiota, SCFAs, and obesity.

• *Firmicutes/Bacteroidetes* ratio may not be a robust marker to explain the pathophysiology of obesity

• Correlation network analysis shows an altered structure at operational taxonomic units.

• *Bacteroidetes* taxa are generally better predictors of BMI z-score and obesity condition than *Firmicutes* taxa

• Members of the *Bacteroidetes* and certain populations of *Firmicutes* are associated with childhood obesity, though members of the *Firmicutes* exhibited contrasting shifts.

Outlook

• Additional studies are needed to better characterize and functionally categorize the members of *Firmicutes* phyla

• Future research has to include detailed analysis of metabolic activity of the gut microbiota
Acknowledgement

Giulia Morace
Elisa Borghi
Elvira Verduci
Francesca Borgo
Carlotta Lassandro

David Berry
Orest Kuzyk
Buck Hanson
Craig Herbold