Norwegian Institute of Public Health

Persistent environmental toxicants in human breast milk and infant growth

Rachel Criswell MD/MS Candidate Columbia University Norwegian Institute of Public Health

Power of Programming Conference 13-15, October 2016 Munich, Germany

Toxicants and metabolic outcomes

- Toxicants are passed to infants via breastmilk
- Perinatal toxicant exposure alters growth patterns and later obesity outcomes (Iszatt 2016, Iszatt 2015, Vafeiadi 2015, Valvi 2014, Mendez 2011, Tang-Peronard 2011, Verhulst 2009)
- Most studies look at levels in maternal pregnancy serum or cord blood

Objective

 Explore levels of 26 toxicants in human breast milk and their association with rapid infant growth

Study design: HUMIS-NoMic Study

- Prospective cohort of 2,606
- Enrolled 2 weeks postpartum between 2002-2008
- Questionnaires completed on child's weight and length, pregnancy information, mothers' health status
 - Linked to Norwegian Medical Birth Registry
- 2400 have milk samples
 - Toxicants analyzed in 1300
 - Milk lipids analyzed in 800

 Also have collected data on gut microbiota, metabolomics, diet, neuropsychological outcomes, immune outcomes

Characteristics

- 800 milk samples analyzed
 - Obese women oversampled
- Excluded duplicates and twins
 - > 789 singleton infants
- 19.2% rapid growers
- Mean maternal age 29.6 years
- Median pre-pregnancy BMI 24.0
- 45.3% of mothers were overweight or obese
- Rapid growers more likely to be first-born

Exposures and outcomes

Final exposures: Persistent organic pollutants (POPs)

- Now largely banned, but previously widely used for pest control, industrial uses
- Accumulate and biomagnify in food chain
- Highly lipophilic
- Endocrine-disruptors

NIPH

Results: Logistic regression

• Adjusted for maternal smoking, parity, sex, cumulative breastfeeding, education, pre-pregnancy BMI, maternal age, gestational weight gain, birth weight, gestational age, preterm status

IQR-adjusted results

• Adjusted for maternal smoking, parity, sex, cumulative breastfeeding, education, pre-pregnancy BMI, maternal age, gestational weight gain, birth weight, gestational age, preterm status

β-HCH and growth outcomes

- Previous studies on β-HCH and growth outcomes have been equivocal
 - Prenatal exposure linked to increased BMI zscores and risk of overweight at 7 years (Agay-Shay 2015)
 - Others have found no association with growth outcomes (Cupul-Uicab 2013, Mendez 2011, Eggesbø 2009)
- In adults, serum β-HCH linked to increased BMI, insulin resistance, diabetes (Arrebola 2014, Dirinck 2011, Everett 2010)

POPs and programming

- HCB and PCBs in breast milk associated with lower birth weight, restricted fetal and infant growth (Iszatt 2015, Stigum 2015, Govarts 2012, Eggesbø 2009)
- Perinatal exposure to endocrine-disrupting chemicals leads to physiologic changes that predispose to obesity (Vafeiadi 2015, Tang-Peronard 2011)

β-HCH and programming

Conclusions

- β-HCH exposure via breast milk are associated with reduced odds of rapid growth in infancy
- May be related to decreased infant growth
- Acknowledgements:
 - <u>Norwegian Institute of Public Health</u>: Merete Eggesbø, Virissa Lenters, Nina Iszatt
 - Public Health Foundation of India: Siddhartha Mandal
 - <u>Dr. von Hauner Children's Hospital</u>: Hans Demmelmaier, Olaf Uhl
 - <u>Columbia University</u>: Mady Hornig

Thank you! rachellouise.criswell@fhi.no

